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Abstract. Incomplete data problem is unavoidable in automated brain
disease diagnosis using multi-modal neuroimages (e.g., MRI and PET).
To utilize all available subjects to train diagnostic models, deep networks
have been proposed to directly impute missing neuroimages by treating
all voxels in a 3D volume equally. These methods are not diagnosis-
oriented, as they ignore the disease-image specific information conveyed
in multi-modal neuroimages, i.e., (1) disease may cause abnormalities
only at local brain regions, and (2) different modalities may highlight
different disease-associated regions. In this paper, we propose a unified
disease-image specific deep learning framework for joint image synthe-
sis and disease diagnosis using incomplete multi-modal neuroimaging
data. Specifically, by using the whole-brain images as input, we design
a disease-image specific neural network (DSNN) to implicitly model
disease-image specificity in MRI/PET scans using the spatial cosine ker-
nel. Moreover, we develop a feature-consistent generative adversarial net-
work (FGAN) to synthesize missing images, encouraging DSNN feature
maps of synthetic images and their respective real images to be con-
sistent. Our DSNN and FGAN can be jointly trained, by which missing
images are imputed in a task-oriented manner for brain disease diagnosis.
Experimental results on 1, 466 subjects suggest that our method not only
generates reasonable neuroimages, but also achieves the state-of-the-art
performance in both tasks of Alzheimer’s disease (AD) identification and
mild cognitive impairment (MCI) conversion prediction.

1 Introduction

Multi-modal neuroimaging, such as structural magnetic resonance imaging
(MRI) and positron emission tomography (PET), provides complementary infor-
mation and have been widely used in computer-aided diagnosis of Alzheimer’s
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Fig. 1. Illustration of our disease-image specific deep learning framework, including (1)
a disease-image specific neural network (DSNN) and (2) a feature-consistent generative
adversarial network (FGAN). RNB: Residual Network Block.

disease (AD) and mild cognitive impairment (MCI) [1,2]. The missing data prob-
lem is a common challenge in multi-modal neuroimaging studies, since subjects
may lack a specific modality due to patient dropouts or poor data quality.

Conventional methods typically discard modality-incomplete subjects [1],
which reduces the subjects that can be used to train a diagnosis model and hence
may degrade the diagnostic performance. To utilize all available subjects, a cycle-
consistent generative adversarial network (CGAN) has recently been employed
to impute missing PET images [2,3]. This model, however, equally treats all
voxels in each 3D volume and thus ignores the disease-image specificity con-
veyed in multi-modal data. Specially, such disease-image specificity is two-fold,
including (1) not all brain regions are associated with a specific disease, and (2)
disease-related brain regions could be different in MRI and PET. Previous stud-
ies have shown that the diagnosis models can implicitly or explicitly represent the
disease-image specificity [1]. Therefore, it is intuitively desirable to improve diag-
nostic performance by integrating diagnosis and image synthesis into a unified
framework, i.e., imputing missing neuroimages in a diagnosis-oriented manner.

In this paper, we propose a disease-image specific deep learning framework for
joint disease diagnosis and image synthesis using incomplete multi-modal neu-
roimages (see Fig. 1). As shown in Fig. 1, our method contains a disease-image
specific neural network (DSNN) for diagnosis and a feature-consistent gener-
ative adversarial network (FGAN) for image synthesis. Herein, DSNN encodes
disease-image specificity in its feature maps to assist the training of FGAN, while
FGAN imputes missing images to improve the diagnostic performance of DSNN.
Experimental results on 1, 466 subjects suggest that our method can not only
synthesize reasonable MR and PET images, but also achieve the state-of-the-art
results in both tasks of AD identification and MCI conversion prediction.
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2 Method

DSNN: It is considered that different regions in the brain vary in anatomy
and/or function, and a specific brain disease is often associated with some specific
regions. Hence, previous studies usually partition the brain into multiple regions-
of-interest (ROIs) and then construct a disease classification model using the
features extracted in pre-defined disease-associated ROIs [4,5]. By contrast, the
proposed DSNN can directly extract features from the whole brain image and
provide critical information implicitly (i.e., disease-related MRI/PET regions)
to aid the image imputation conducted by FGAN.

We can decompose each MR/PET image X into (1) a disease-associated part
and (2) a residual normal part. After feature extraction by F (∗), i.e., convolu-
tional (Conv) layers in DSNN, the output feature map f can be decomposed
accordingly into the disease-associated part fd and the residual normal part fr,
where f = F (X) = αfd+(1−α)fr and α is a coefficient indicating the severity of
disease-associated part for a respective subject. The diagnosis result should be
independent of the residual normal part fr since fr is not related to the disease.
Therefore, the response of the classifier C(∗) to the entire feature map is only
associated with the disease-associated part, i.e., C(f) = C(fd). Note that, in
DSNN, we propose a spatial cosine module to suppress the effects of α and fr,
thus making the disease-related features conspicuous and easy to be captured.

Assume the feature map generated by the final Conv layer in DSNN to be
U = {v1,v2, · · · ,vK}, where each element is a vector corresponding to a spatial
location in the brain. We first perform l2-normalization on each vector in U , and
then concatenate them as the spatial representation of an MRI/PET scan:

u =

(
vT
1

‖v1‖2
,

vT
2

‖v2‖2
, · · · ,

vT
K

‖vK‖2

)T

. (1)

This alleviates the influence from variation of α across different images. Theory
to alleviate such a influence can refer to [6,7]. Suppose C(∗) is a classifier with
a hyperplane parameter w, defined as the cosine kernel:

C(u;w) =
uTw

‖u‖2 ‖w‖2
=

uT

‖u‖2
· w

‖w‖2
, (2)

which is equivalent to the product of l2-normalized u and w, both having the
constant unit norm. The constant norm forces C(∗) to focus on the disease-
associated part since all features have the same norm after l2-normalization (in
Eq. 1), and thus suppresses the influence of the residual normal part.

As shown in the bottom left part of Fig. 1, our DSNN contains sequentially (1)
a feature extraction module and (2) a spatial cosine module. The first module has
5 Conv layers, with 16, 32, 64, 64, and 64 channels, respectively. The first 4 and
the last Conv layers are respectively followed by the max-pooling and average-
pooling with the stride of 2 and the size of 3 × 3. By inputting a neuroimage,
the feature extraction module outputs feature maps at each Conv layer. The
spatial cosine module first l2-normalizes the feature vectors in the feature map
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of the 5th Conv layer and concatenates them to a spatial representation, and
then utilizes a fully-connected layer with cosine kernel (as Eq. 2) to compute the
probability score of a subject belonging to a particular category.

FGAN: Motivated by the fact that a pair of MR and PET images (scanned
from the same subject) have underlying relevance but probably different disease-
associated regions, we accordingly develop a feature-consistent generative adver-
sarial network (FGAN) to synthesize a missing PET image based on its corre-
sponding MRI (see the top left in Fig. 1). Especially, FGAN contains a feature-
consistent component to encourage the feature maps of a synthetic image pro-
duced by the diagnosis model (i.e., DSNN containing disease-image specificity)
to be consistent with the feature maps of its corresponding real image.

Denote XM and XP as the MRI and PET scans from the same subject. We
aim to learn an image generator GM : XM → XP to impute the missing PET
image via GM (XM ). An inverse mapping GP : XP → XM (GP = G−1

M ) can
be also learned to build a bidirectional mapping between MRI and PET [2].
Basically, a discriminator is needed to encourage that the distribution of syn-
thetic scans (e.g., GM (XM )) is indistinguishable from the distribution of its
corresponding real images (e.g., XP ). We further introduce a feature-consistent
component to enforce that the disease-image specificity is consistent between
the synthetic scan (e.g., GM (XM )) and its real scan (e.g., XP ). Accordingly,
two kinds of loss are incorporated into our FGAN, including an adversarial loss
and a feature-consistent loss. Specifically, the adversarial loss is defined as

Lg(XM , XP ;GM , GP , DM , DP ) = (log(DP (XP )) + log(1 − DP (GM (XM ))))

+ (log(DM (XM )) + log(1 − DM (GP (XP )))) ,
(3)

where DM and DP are two discriminators that can identify whether an input
image is real or synthetic. The proposed feature-consistent loss is defined as

Lc(XM , XP ;GM , GP , FM , FP ) = ‖FM (GP (XP )) − FM (XM )‖
+ ‖FP (GM (XM )) − FP (XP )‖ ,

(4)

where FM and FP are the proposed feature-consistent components to encourage
that a pair of synthetic and real scans from the same modality share the same
disease-image specificity. Finally, the overall loss function of FGAN is defined as

L(XM , XP ;GM , GP , DM , DP , FM , FP ) =Lc(XM , XP ;GM , GP , FM , FP )

+ Lg(XM , XP ;GM , GP , DM , DP ).
(5)

As shown in the top left part of Fig. 1, our FGAN contains three components,
including (1) two generators (i.e., GM and GP ), (2) two adversarial discrimina-
tors (i.e., DM and DP ), and (3) two feature-consistent components (i.e., FM and
FP ). Specifically, each generator (e.g., GM ) consists of three Conv layers (with 8,
16, and 32 channels, respectively) to extract the knowledge of images in the orig-
inal domain (e.g., XM ), six residual network blocks (RNBs) [8] to transfer the
knowledge from the original domain (e.g., XM ) to the target domain (e.g., XP ),
and two deconvolutional (Deconv) layers (with 32 and 16 channels, respectively)
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and one Conv layer (with 1 channel) to construct the image in the target domain
(e.g., XP ). Each discriminator (e.g., DP ) contains five Conv layers, with 16, 32,
64, 128, and 1 channel(s), respectively. It outputs an indicator to tell whether the
input pair of real image (e.g., XP ) and synthetic image (e.g., GM (XM )) are dis-
tinguishable (output: 0) or not (output: 1). Each feature-consistent component
(e.g., FP ) contains two subnetworks with shared architecture and parameters
from the feature extraction module in our DSNN. It inputs a pair of real image
(e.g., XP ) and synthetic image (e.g., GM (XM )), and then outputs a differential
score to indicate the similarity between the feature maps of the real and its
corresponding synthetic image. In this way, the disease-image specificity learned
in DSNN can be used to aid the image imputation process in FGAN, by which
the modality-specific disease-related brain regions could be more effectively syn-
thesized. In turn, the synthetic images could be more relevant to brain disease
diagnosis, thus effectively improving the performance of DSNN.

Implementation: We first train FM and FP via DSNN for 40 epochs using
complete subjects (i.e., those with paired PET and MR images). We then train
DM and DP by minimizing −Lg(∗) with fixed GM and GP , and train GM and
GP by minimizing L(∗) with fixed DM and DP , iteratively, for 100 epochs. After
that, we retrain DSNN for 40 epochs using both real and synthetic data. The
Adam solver [9] is used with a batch size of 1 and a learning rate of 2 × 10−3.

3 Experiments

Materials and Experimental Setup: We evaluated the proposed method on
two subsets of ADNI [10], including ADNI-1 and ADNI-2. Subjects were divided
into four categories: (1) AD, (2) cognitively normal (CN), (3) progressive MCI
(pMCI) that would progress to AD within 36 months after baseline, and (4) static
MCI (sMCI) that would not progress to AD. After removing subjects that exist
in both ADNI1 and ADNI2 from ADNI2, there are 205 AD, 231 CN, 165 pMCI
and 147 sMCI subjects in ADNI-1, while there are 162 AD, 209 CN, 89 pMCI and
258 sMCI subjects in ADNI-2. All subjects in ADNI-1 and ADNI-2 have baseline
MRI data, while only 403 subjects in ADNI-1 and 595 subjects in ADNI-2 have
PET images. For image pre-processing, we performed skull-stripping, intensity
correction and spatial normalization for all images. Each PET image was aligned
to its corresponding MRI scan. Hence, there is spatial correspondence between
a pair of MRI and PET scans for each subject.

We performed two groups of experiments in this work. In the first group, we
evaluated the quality of synthetic images generated by our method. In the second
group, we compared our method with state-of-the-art methods in both tasks of
AD identification (AD vs. CN classification) and MCI conversion prediction
(pMCI vs. sMCI classification). Subjects from ADNI-1 were used for training
the models, while those from ADNI-2 for the independent test. The first group
of experiments were carried on only real MRI and PET scans, while the second
group of experiments used both real and synthetic multi-modal neuroimages.
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Evaluation of Synthetic Neuroimages: We first evaluated the quality of
synthetic images generated by our FGAN method. Two generative models were
compared with FGAN, including (1) a conventional GAN with only the adver-
sarial loss, and (2) the cycle-consistent GAN (CGAN) [2]. We trained these
three models (i.e., GAN, CGAN, and FGAN) using the subjects with MRI and
PET scans in ADNI-1, and tested the trained models on complete subjects (with
both MRI and PET) in ADNI-2. We used three metrics to measure the qual-
ity of synthetic images generated by different methods, including (1) the mean
absolute error (MAE), (2) peak signal-to-noise ratio (PSNR), and (3) structural
similarity index measure (SSIM) [11]. To evaluate the reliability of synthetic MR
and PET images in disease diagnosis, we further reported the values of the area
under receiver operating characteristic (AUC) achieved by our DSNN on both
classification tasks of AD vs. CN (AUC∗) and pMCI vs. sMCI (AUC†). For a
fair comparison, we first trained two DSNN models on ADNI-1 using real MRI
and real PET scans, respectively. Then, we applied these DSNNs to subjects in
ADNI-2 represented by synthetic MR and PET images, respectively.

Table 1. Results (% except PSNR) of image synthesis achieved by three different
methods for MRI and PET scans of subjects in ADNI-2, with the models trained on
ADNI-1.

Method Synthetic MRI Synthetic PET

MAE SSIM PSNR AUC∗ AUC† MAE SSIM PSNR AUC∗ AUC†

GAN 15.03 55.56 23.48 66.83 53.64 10.54 57.70 27.15 60.47 51.92

CGAN 14.09 59.38 23.96 71.00 57.20 9.72 61.46 28.16 65.91 58.43

FGAN (Ours) 12.61 64.04 25.10 92.98 77.61 8.03 68.17 29.62 83.80 71.27

Results of image synthesis are reported in Table 1. Three interesting obser-
vations can be found from Table 1. First, FGAN and CGAN generally yield
better results than GAN, suggesting that the cycle-consistent loss and feature-
consistent loss help synthesize images with higher quality. Second, our FGAN
consistently outperforms CGAN in synthesizing both MRI and PET scans in
terms of three metrics (i.e., MAE, SSIM and PSNR). It reveals that the proposed
feature-consistent loss in FGAN is more effective in improving the image qual-
ity of synthetic images, compared with the cycle-consistent loss used in CGAN.
Besides, AUC values obtained by using FGAN-based synthetic images are signif-
icantly better than those using CGAN-based and GAN-based synthetic images.
This implies that our FGAN can generate diagnosis-oriented images, thus help-
ing boost the performance of brain disease diagnosis. In Fig. 2, we further visu-
alize the synthetic images generated by three methods and their corresponding
real/ground-truth images for a typical subject in ADNI-2. Figure 2 suggests that
the images synthesized by our FGAN are more visually similar to the ground
truth (especially for the hippocampus regions, see yellow and red squares in
Fig. 2), compared with those generated by GAN and CGAN.
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Evaluation of Disease Identification: We further evaluated our DSNN
method in both tasks of AD identification (AD vs. CN) and MCI conversion
prediction (pMCI vs. sMCI). The proposed DSNN is first compared with two
conventional methods using concatenated MRI and PET features, i.e., (1) ROI
method [12], and (2) patch-based morphology (PBM) [13]. We also compared
DSNN with two deep learning methods, i.e., (3) landmark-based deep multi-
instance learning (LDMIL) [5], and (4) a variant of DSNN (called DSNN1)
that globally averages the feature map of the fifth Conv layer and uses a fully
connected layer for classification (instead of using the spatial cosine module in
DSNN). In DSNN/DSNN1, a pair of MR and PET images are fed into two
parallel DSNN/DSNN1 models to generate two probability scores, followed by
averaging these scores for classification. These five methods utilize all subjects
with both real multi-modal (i.e., MRI and PET) scans and synthetic PET images
generated by our FGAN. We also performed experiments on complete subjects
(with only real MRI and PET scans), and denoted the corresponding methods
as “-C”. We employ six metrics for performance evaluation in disease diagnosis,
including AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score
(F1S), and Matthews correlation coefficient (MCC) [14]. Disease classification
results were reported in Table 2.

From Table 2, we can see that the overall performance of our DSNN method is
superior to four competing methods using both real and synthetic data in terms
of six metrics. For instance, our DSNN method achieves the best AUC value
(83.94%) in pMCI vs. sMCI classification. This implies that DSNN is reliable in
predicting the progression of MCI patients, which is potentially very useful in
practice. Besides, in both classification tasks, three deep learning methods (i.e.,
LDMIL, DSNN1, and DSNN) generally outperform two conventional approaches
(i.e., ROI and PBM) that use hand-crafted features. This suggests that integrat-
ing feature extraction and classifier construction into a unified framework (as we
do in DSNN) can boost the performance of brain disease diagnosis. Further-
more, DSNN yields better diagnostic performance than both LDMIL and its
variant (i.e., DSNN1 with simple average pooling). This implies that the pro-
posed spatial cosine kernel provides a more efficient strategy to capture the
disease-image specificity embedded in neuroimages, compared with the cases
of using pre-defined disease-related regions in LDMIL and without mining the
disease-image specificity in DSNN1. In addition, the methods using both real
and synthetic images consistently outperform their counterparts that utilize just
complete subjects with real MRI and PET scans, suggesting that the neuroim-
ages generated by our FGAN are useful in promoting the performance of brain
disease diagnosis. Note that we didn’t use synthetic MRIs generated by FGAN
in Table 2, because all subjects in ADNI have real MRIs. Using both real and our
synthesized MRIs for training, the proposed DSNN method achieved an AUC
value of 84.24% in pMCI vs. sMCI classification, which is slightly better than
that (83.94%) of DSNN without using synthetic MRIs generated by FGAN.
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(a) GAN (b) CGAN (c) FGAN (d) Ground Truth

Fig. 2. PET and MRI scans synthesized by three methods for a typical subject (Roster
ID: 4029) in ADNI-2, along with their corresponding ground-truth images.

Table 2. Diagnosis results (%) achieved by five different methods using complete
subjects (denoted as “-C” with real MRI and PET scans) and all subjects (with both
real images and synthetic PET images generated by FGAN) in two classification tasks.

Method AD vs. CN classification pMCI vs. sMCI classification

AUC ACC SPE SEN F1S MCC AUC ACC SPE SEN F1S MCC

ROI-C 88.95 81.49 82.99 80.32 79.74 62.92 69.17 66.92 42.50 77.78 44.16 20.74

PBM-C 87.87 82.39 80.27 84.04 80.00 64.27 68.04 68.85 60.00 72.78 54.24 31.28

LDMIL-C 95.64 90.75 88.44 92.55 89.35 81.18 82.62 76.92 71.25 79.44 65.52 48.67

DSNN1-C 94.40 89.25 88.44 89.89 87.84 78.22 78.70 75.00 67.50, 78.33 62.43 44.13

DSNN-C (Ours) 95.78 90.45 89.80 90.96 89.19 80.64 82.74 76.15 76.25 76.11 66.30 49.33

ROI 90.51 83.42 84.24 82.78 81.76 66.69 72.31 71.30 52.81 77.73 48.70 29.12

PBM 91.46 84.49 81.21 87.08 82.21 68.48 72.79 71.88 64.04 74.61 54.03 35.37

LDMIL 96.76 91.71 88.48 94.26 90.40 83.17 83.89 79.71 71.91 82.42 64.65 51.13

DSNN1 94.72 89.57 85.45 92.82 87.85 78.82 79.98 76.52 69.66 78.91 60.49 44.98

DSNN (Ours) 97.02 92.25 90.91 93.30 91.18 84.27 83.94 80.00 70.79 83.20 64.61 51.20

4 Conclusion

We proposed a disease-image specific deep learning framework for joint disease
diagnosis and image synthesis with incomplete multi-modal neuroimaging data,
where a diagnosis network is employed to provide disease-image specificity to an
image synthesis network. Specifically, we designed a disease-image specific neu-
ral network (DSNN) and trained it on the entire image to implicitly capture the
disease-associated information conveyed in MRI and PET. We further developed
a feature-consistent generative adversarial network (FGAN) to synthesize miss-
ing neuroimages, by encouraging DSNN feature maps of each synthetic image
and the respective real image to be consistent. Experiments on ADNI demon-
strate that our method generates reasonable neuroimages and also achieves the
state-of-the-art performance in AD identification and MCI conversion prediction.
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